Posts

Is My Parkinson’s Honeymoon Over?

Parkinson's honeymoon

When I started writing this column, I was having a pity party and was in a bad place. Wanting to reflect positivity, I decided to stop writing until I had a better frame of mind.

Why was I feeling sorry for myself?

More than four years have passed since my Parkinson’s diagnosis. I didn’t realize how good I had it then. I remember that previously, my deteriorating symptoms would cause me to tell myself that if it didn’t get worse, I could handle it. Recently, however, it seems that many of my symptoms, especially the non-motor ones, are worsening.

My balance is worsening such that I feel unsteady when walking in narrow areas with crowds. I frequently cough and choke on my food. I gag when I take pills and supplements. People ask me to repeat myself more often. It seems as though I am slurring my speech. Anxiety frequently visits me, something I never experienced prior to my diagnosis.

I can’t seem to find the right combination of medications, despite working on that for almost two years. Much trial and error have followed, as I test whether it’s better to take my medications before or after a meal, and change or add new medicines. I must be weaned off some drugs, while others must be increased for six to eight weeks to test therapeutic benefit. Another person with Parkinson’s coined the term “tweaking and seeking” to describe this lengthy and frustrating process.

Based on my experiences and what I have heard from others with Parkinson’s, it seems as though we must choose our poison. For example, do I prefer dyskinesia induced by carbidopa-levodopa or bradykinesia, the main symptom for which I take that medication?

About that Parkinson’s honeymoon

A friend mentioned to me that he is considering deep brain stimulation surgery because he feels that his Parkinson’s honeymoon is over. I had never heard the term “honeymoon” related to Parkinson’s, so I did some Googling, wondering if my honeymoon period was also coming to a close.

In general, the first stage of the disease is a honeymoon period that lasts up to eight years, during which patients can live what’s practically a normal life, according to Parkinson Québec. It also is the stage during which treatment is most noticeably effective.

When I started to write about the honeymoon ending for me, I realized that kind of negative thinking wouldn’t help me. Leaving this column unfinished for a few weeks was a good decision. I have come back to it refreshed and with that bad place behind me.

Although my symptoms may be worsening and new ones may be appearing, I refuse to go down without a fight. Speech therapy and an assessment by a therapist certified by Parkinson Wellness Recovery are on my list of next steps. Medical marijuana, which is legal in New York for Parkinson’s patients, is something I also am considering.

It’s therapeutic to have a plan with a course of action, and I now have a renewed sense of hope. My Parkinson’s second honeymoon is just beginning!

Never give up, for that is just the place and time that the tide will turn.” ―Harriet Beecher Stowe

***

Note: Parkinson’s News Today is strictly a news and information website about the disease. It does not provide medical advice, diagnosis, or treatment. This content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or another qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website. The opinions expressed in this column are not those of Parkinson’s News Today or its parent company, BioNews Services, and are intended to spark discussion about issues pertaining to Parkinson’s disease.

The post Is My Parkinson’s Honeymoon Over? appeared first on Parkinson’s News Today.

Taking the Day Off from Parkinson’s

day off

I had a pretty good day recently. It was better than I’d had in a long while. I remember thinking that I could forget I had Parkinson’s disease if every day was like that day.

But every day isn’t like that one. Every other day usually begins with being slow and rigid. If I didn’t have Parkinson’s disease, I would jump out of bed and skip to the bathroom. It would be the beginning of a new day.

If I was taking the day off from having Parkinson’s disease, I would take my morning medicinal cocktail and not feel nauseous at all. But wait — if I didn’t have Parkinson’s, I wouldn’t need a medicinal cocktail.

My shower time would be halved, and I wouldn’t have to worry about being off balance in the shower or falling when stepping out of it. 

I would sit down at my computer, and instead of my fingers seizing up, feeling like popsicle sticks, and refusing to be obedient to my brain, they would begin to type. One word, two words, three words, four — just like the old times. 

What if?

But if it were like “old times,” I would most likely still be working. I would be sitting at my desk taking phone calls, encouraging people, and leading a children’s choir. Or I would be running my business again, making wooden figurines for Christmas, Thanksgiving, and Easter scenes. 

Perhaps I would have retired by now and would be watching my grandkids full-time instead of a few hours, two days a week. And I wouldn’t need a nap (or two) during the day.

If I had escaped the Parkinson’s monster, I would be able to drive myself wherever I wanted to go. I would be able to do laundry anytime and not just when I’m “on.” I could fold clothes and carry out other household chores without any help.

If I didn’t have Parkinson’s disease, I wouldn’t have to deal with my medications being “off” or “on.” I could float through my day. 

Life would be good.

Don’t misunderstand me

My life is good in spite of Parkinson’s disease. I have so much to be thankful for that I once may have taken for granted. Family and friends are so much more precious and valuable to me now.

Daily doses of dopamine may be the norm now, or adjusting deep brain stimulation settings, but I still get those priceless hours with my grandkids, and the medication still works when I take it. So, even if I can’t really take the day off from having Parkinson’s, some days are better than others, and I’ll take what I can get.

***

Note: Parkinson’s News Today is strictly a news and information website about the disease. It does not provide medical advice, diagnosis, or treatment. This content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or another qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website. The opinions expressed in this column are not those of Parkinson’s News Today or its parent company, BioNews Services, and are intended to spark discussion about issues pertaining to Parkinson’s disease.

The post Taking the Day Off from Parkinson’s appeared first on Parkinson’s News Today.

Imaging Technique Finds Key Neurons in Brain Interact, May Support More Targeted Treatments

nerve cell communication

Two key types of brain nerves cells affected by Parkinson’s disease — cholinergic neurons and dopaminergic neurons — communicate and interact via signaling systems, researchers were able to “see” using a new imaging approach.

This beneficial neuron-to-neuron interaction, confirmed through the novel approach in a rat model of the disease, also supported further work on targeted treatments for Parkinson’s, including a potential gene therapy.

Their study, DREADD Activation of Pedunculopontine Cholinergic Neurons Reverses Motor Deficits and Restores Striatal Dopamine Signaling in Parkinsonian Rats,” was published in Neurotherapeutics.

Parkinson’s is a progressive neurodegenerative disease, meaning that it steadily worsens as neurons die over time. One of its hallmarks is the loss of dopamine — a neurotransmitter crucial for coordinating movement and regulating mood — that occurs when dopaminergic neurons in a brain structure called the substantia nigra malfunction and die.

Cholinergic neurons — those that produce the neurotransmitter acetylcholine — are nerve cells found in the pedunculopontine nucleus (PPN) of the brain. They are also implicated in Parkinson’s, since in post mortem studies of patients’ brain tissue a significant amount of these cells are found dead.

Researchers had previously used used a harmless virus to deliver a genetic modification to cholinergic neurons in a rat model of Parkinson’s disease. This technique is called designer receptors exclusively activated by designer drugs (DREADDs), and consists of a class of engineered proteins that allow researchers to hijack cell signaling pathways in order to look at cell-to-cell interactions more easily.

The animals were then given a compound designed to activate the genetic ‘switch’ and stimulate the target neurons. After treatment, almost all animals had recovered and were able to move.

Now, this same research team used positron emission tomography (PET), a brain imaging technology, together with DREADDs to selectively activate cholinergic neurons in the brains of diseased rats and look at how other brain cells responded.

They found that stimulating cholinergic neurons led to the activation of dopaminergic neurons in the rat brain, and dopamine was released.

This means that cholinergic activation restored the damaged dopaminergic neurons. The parkinsonian rats appeared to completely recover — they were able to move without problems and their postures returned to normal.

“This is really important as it reveals more about how nerve systems in the brain interact, but also that we can successfully target two major systems which are affected by Parkinson’s disease, in a more precise manner,” Ilse Pienaar, PhD, a researcher at the University of Sussex and Imperial College London and study author, said in a press release.

“While this sort of gene therapy still needs to be tested on humans, our work can provide a solid platform for future bioengineering projects,” Pienaar added.

This new technique has several advantages over deep brain stimulation (DBS), a surgical procedure that sends electrical impulses to the brain to activate the neurons.

Deep brain stimulation can help to relieve some Parkinson’s symptoms, but is invasive and has had mixed results. Some patients show improvements while others experience no changes in symptoms or even a deterioration. This may be due to therapy imprecision, as DBS stimulates all types of brain nerve cells without a specific target.

This study sought to address the selectivity issue by looking at the activation of one type of cell in a specific part of the brain to get a better understanding of how other parts might be influenced.

“[T]he current data could allow for designing medical approaches capable of improving the ratio between desirable and undesirable outcomes and leaving nonimpaired functions intact. For example, specific genetically defined neurons … could be targeted to treat motor symptoms of [Parkinson’s], without inducing a cognitive detriment, and vice versa,” the researchers wrote.

“For the highest chance of recovery, treatments need to be focused and targeted but that requires a lot more research and understanding of exactly how Parkinson’s operates and how our nerve systems work,” Pienaar said. “Discovering that both cholinergic and dopaminergic neurons can be successfully targeted together is a big step forward.”

The researchers concluded, “[t]his study supports the hypothesis that it is the cholinergic neuronal population, projecting from the PPN, which delivers some of the clinical benefits associated with PPN-DBS.”

Pienaar and colleagues collaborated with Invicro, a precision medicine company, for this study. Lisa Wells, PhD, a study co-author on the study and Invicro employee added, “It has been an exciting journey … to combine the two technologies [DREADD and PET] to offer us a powerful molecular approach to modify neuronal signaling and measure neurotransmitter release. We can support the clinical translation of this ‘molecular switch’ … through live imaging technology.”

This work may make possible more selective and more effective treatment alternatives to deep brain stimulation.

The post Imaging Technique Finds Key Neurons in Brain Interact, May Support More Targeted Treatments appeared first on Parkinson’s News Today.

Deep Brain Stimulation May Impair Swimming Ability and Increase Risk of Drowning, Case Studies Suggest

swim DBS

Patients who undergo deep brain stimulation to treat Parkinson’s disease may lose their ability to swim, even if their motor symptoms improve after the treatment or if they were formerly proficient swimmers, a collection of nine case studies has found.

The study, “Beware of deep water after subthalamic deep brain stimulation,” was published in the journal Neurology.

“Until more research is done to determine why some people with deep brain stimulation can no longer swim, it is crucial that people be told now of the potential risk of drowning and the need for a carefully supervised assessment of their swimming skills before going into deep water,” Daniel Waldvogel, MD, researcher at the University of Zurich in Switzerland and lead author of the study, said in a press release.

Deep-brain stimulation (DBS) is an invasive surgical treatment in which fine wires are inserted into the brain and connected to a device placed under the skin in the upper chest. The device controls electrical impulses to stimulates areas responsible for movement control, such as the subthalamic nucleus.

DBS is usually used on Parkinson’s patients whose motor symptoms do not respond well to standard medications, and studies have shown long-term improvements in motor symptoms, quality of life, ability to perform regular daily activities, and a significant reduction in the need for levodopa.

However, researchers now say that despite a successful surgical procedure and improvement in motor symptoms, some patients can lose their ability to swim.

The nine patients described in the study had received deep brain stimulation of the subthalamic nucleus, and all were highly satisfied with the treatment’s overall outcome. “However, they were frustrated by their lost ability to coordinate limb movements for swimming,” the researchers said.

The researchers described three of the nine cases in their study.

The first case was a 69-year-old man who lived by a lake and was an experienced and proficient swimmer. Due to his good motor outcomes after undergoing DBS, the man was confident enough to jump into the lake, but he would have drowned if not rescued by a family member.

The second case was of a woman, 59, who was a competitive swimmer and continued to swim even after being diagnosed with Parkinson’s. However, after undergoing DBS, she lost her ability to swim, which never came close to her previous level even after regular swimming practice with a physical therapist.

Finally, researchers reported the case of a 61-year-old woman with a lifesaving diploma, who used to swim in competitions crossing Lake Zurich, which is two miles wide. After the surgical procedure, however, she could barely swim two-tenths of a mile and complained of an awkward posture when trying to swim.

“Swimming is a highly coordinated movement that requires complicated arm and leg coordination,” Waldvogel said. “Exactly how deep brain stimulation is interfering with this ability needs to be determined.”

Three of the nine patients turned off their DBS devices and immediately regained their ability to swim. However, this led to worsening of their other motor symptoms, which made them switch on their devices again.

“Even though these reports affected only a few people, we felt this potential risk was serious enough to alert others with Parkinson’s disease, as well as their families and doctors,” Waldvogel said.

More studies are warranted to better understand the real adverse effects of DBS, including its impact on patients’ ability to swim.

The post Deep Brain Stimulation May Impair Swimming Ability and Increase Risk of Drowning, Case Studies Suggest appeared first on Parkinson’s News Today.

Glassy Carbon Electrodes Safer Than Metal in MRIs, Study Suggests

glassy carbon electrodes

Implantable electrodes made of glassy carbon may be safer for use in MRI scans than traditional electrodes made of metal for people who undergo deep brain stimulation, a new study shows.

The study, “Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging,” was published in Microsystems & Nanoengineering.

In cases where Parkinson’s patients are not responding well to medication, deep brain stimulation (DBS) can be used to treat motor symptoms associated with this neurodegenerative disease. The treatment involves surgically implanting an electrode directly in the brain, then using that electrode to electrically stimulate specific brain regions.

Traditionally, electrodes used for DBS have been made of metal, most typically platinum. But metal electrodes pose a problem when a person needs to undergo an MRI scan. Such scans can be used to image the brain using powerful magnets, but those magnets can interact badly with metal electrodes.

Specifically, the electrodes can lead to large “white spots” on the MRI images themselves, which can limit the utility of the images. Plus, the magnetic fields generated in MRI can cause electrodes to vibrate, or they can generate electrical currents that make the electrode heat up. These circumstances run the risk of causing damage or irritation in the brain.

In the new study, researchers wondered if electrodes made of glassy carbon, instead of metal, would be resistant to these issues. Glassy carbon (GC) is basically a bunch of very thin layers of carbon pressed together.

The researchers previously had created GC-based electrodes designed for DBS, and in a previous study, they showed that these electrodes were more durable than traditional platinum ones.

“Inherently, the carbon thin-film material is homogenous—or one continuous material—so it has very few defective surfaces. Platinum has grains of metal which become the weak spots vulnerable to corrosion,” Sam Kassegne, PhD, a professor at San Diego State University (SDSU) and co-author of both studies, said in a press release.

The researchers tested their GC electrodes in an MRI; but, rather than using actual human brains, they implanted the electrodes in a substance sort of like Jell-O. The researchers demonstrated that, while the metal electrode created a bright white patch on the MRI images themselves, the CG was nearly invisible — suggesting that, in an actual brain, this type of electrode would interfere with imaging far less.

They measured the currents generated in these electrodes during an MRI scan, as well as how much they vibrated, and compared these measurements to similar measurements obtained using traditional metal probes.

They found that the current generated in the GC electrodes was about 10 times lower than that in the metal probes. Similarly, vibrations in the GC electrode were about 40 times weaker than those in the metal ones, Researchers noted, however, that “for both types of microelectrodes, the measurable forces were below the detection limit” — that is, the vibrations were very small for both, even if they were smaller for the GC electrode.

“Our lab testing shows that unlike the metal electrode, the glassy carbon electrode does not get magnetized by the MRI, so it won’t irritate the patient’s brain,” said Surabhi Nimbalkar, study co-author and doctoral candidate at SDSU.

Although the researchers noted that they did not directly assess heating of the electrodes, which may be an avenue for further study, they nonetheless concluded that “GC microelectrodes demonstrate superior behavior with respect to MR safety compared to [platinum]-based electrodes.”

“Since GC has recently been demonstrated to have a compelling advantage over other materials for neural stimulation (…), this MRI compatibility validated in this study offers an additional advantage for long-term in vivo use in clinical settings,” they wrote.

The post Glassy Carbon Electrodes Safer Than Metal in MRIs, Study Suggests appeared first on Parkinson’s News Today.

Activa Patient Programmer for DBS Therapy Available in US, Medtronic Announces

DBS technology

Medtronic, a medical technology company, announced that its Activa patient programmer technology for deep brain stimulation (DBS) therapy is now available to U.S. patients with Parkinson’s disease (PD) and other movement disorders.

The new programmer, approved by the FDA in July, is used with a customized Samsung mobile device to help patients more easily use DBS treatment and in a home setting. The Ireland-based company said that more than 150,000 people have been implanted with its DBS devices globally to manage disease symptoms, particularly those of Parkinson’s, since 1997.

“It is important for patients to have access to advanced technology for user-friendly therapy management at home,” said Sandeep Thakkar, DO, neurologist and movement disorder specialist at Hoag’s Pickup Family Neurosciences Institute, in a press release.

“The new Medtronic DBS Activa Patient Programmer device is an innovative tool that combines familiar consumer technology with medical devices, which facilitates better control for patients in an easier, more accessible way,” Thakkar said.

DBS is a surgical treatment option for people in advanced stages of Parkinson’s, whose movement problems are not being helped by medications. During surgery, one or more wires are inserted deeply into the brain to reach affected areas. These wires are subsequently connected to a pacemaker-like implantable pulse generator that is typically positioned just under the patient’s skin, in the upper thoracic region.

Able to share patient data directly with clinicians, the Patient programmer includes a programmer handset and communicator. When patients wish to modify prescribed therapy settings, check the battery, or activate or deactivate therapy, they hold the communicator above the implanted device and use the programmer to make adjustments.

Clinicians also have the ability to define settings and work with patients to adjust DBS therapy settings when using the therapy away from the clinic.

The system is managed on a Samsung Galaxy Tab S2 tablet with a customized user interface and five-inch touchscreen, and uses Samsung’s security technology to help protect both the device and patient.

Taher Behbehani, head of the Mobile B2B Division, Samsung Electronics America, said the user-friendly therapy marries safety with data control. Medtronic has partnered with Samsung since 2013, expanding into neuromodulation two years later.

“It’s through our open yet secure mobility platform that we can offer this level of customization on our market-leading devices,” he said.

“Medtronic has been the leader in DBS therapy for over 25 years. This launch continues to serve as further evidence of our dedication to our DBS patients,” said Mike Daly, vice president and general manager of the Brain Modulation business, which is part of Medtronic. “With this device, patients gain confidence, as they are able to discreetly manage their DBS therapy no matter where they are.”

The post Activa Patient Programmer for DBS Therapy Available in US, Medtronic Announces appeared first on Parkinson’s News Today.

More Years of Schooling Linked to Better Response to DBS in Small Study

DBS and education

The more years of formal education that people with Parkinson’s disease have, the better they seem to respond to deep-brain stimulation — as seen in a greater ability to “dual-task,” or engage in higher-level thought while walking, a study suggests.

Education level affects dual-task gait after deep brain stimulation in Parkinson’s disease” was published in the journal Parkinsonism & Related Disorders.

Dual-tasking (DT) measures an individual’s ability to carry out a cognitive task (such as counting, or naming words that start with a particular letter) while engaging in a motor skill like walking. As such, it can be a helpful proxy for clinically relevant measures of a patient’s ability to perform everyday life tasks, which rarely come one at a time. Cognitive and motor skills are both impacted by Parkinson’s, and having to move while thinking a bit can increase the risk of falls.

Deep brain stimulation (DBS) is a surgical treatment for Parkinson’s that involves implanting a device to stimulate targeted regions of the brain with electrical impulses generated by a battery-operated neurostimulator.

Previous studies on DBS have yielded conflicting results about whether this intervention can improve dual-tasking. The researchers behind this study wondered if this conflict exists because DBS improves dual-tasking in some people with Parkinson’s, but not for others.

They recruited 34 people with Parkinson’s (average age 60.5, 44% female) and measured their DT-related gait changes a few months before DBS and again a year after DBS.

Based on these measurements, participants were divided into two groups: 18 were “responders,” meaning they had significant improvements for four dual-task assignments at the second measurement (i.e., forward and backward counting, and phonemic and semantic fluency); the remaining 16 were “non-responders” who showed no such improvement.

Cognitive reserve — the brain’s ability to improvise and find alternate ways of preforming a task — can account for differences between individuals in “susceptibility to age- or pathology-related brain changes” and has been studied in Alzheimer’s disease. Importantly, in Parkinson’s disease, higher cognitive reserve is associated with milder cognitive and motor deficits.

Education is known to contribute to cognitive reserve. As such, the researchers also divided the participants based on the highest education level they had completed: primary (through 8th grade), secondary (high school), or ‘high level’ (baccalaureate/university studies of up to 12 years).

Among the 16 non-responders, seven had completed a primary education level, four a secondary, and five had a high level. Among the 18 responders, one had completed primary level schooling, eight secondary, and nine had university level.

Responders were more likely to have completed more years of formal education, with further analyses showing that this association was statistically significant.

Other factors analyzed — including levodopa dose, Unified Parkinson Disease Rating Scale (UPDRS) score, and measurements of cognitive function and memory — were not significantly different between the two groups.

“Educational status affects DT-related gait changes one year post-DBS in [Parkinson’s disease],” the researchers concluded, noting that “a high [cognitive reserve] could be considered as a favourable inclusion criterion for future DBS candidates.”

The post More Years of Schooling Linked to Better Response to DBS in Small Study appeared first on Parkinson’s News Today.

Giving Thanks When Life Hands You a Cane

cane

My appointment was scheduled for 9 a.m. It was 9:32 when the nurse called my name. I arose from where I had been warming a seat cushion and followed her down the hall to the weigh station, where in keeping with tradition, I handed off my purse to my husband before stepping onto the scale.

I pretended not to care about the numbers, but I was secretly elated that they were the same as those on the scale at home and heading in the right direction — down.

The nurse led us down another hall and into a different room. We entered, I took a seat, and she began taking my blood pressure. 

After a brief interval, the deep brain stimulation (DBS) tech entered the room, followed shortly thereafter by my neurologist. 

I answered all of their riveting questions, and then they asked if I had any issues to discuss with them.

Well, let’s see … 

I pulled out my list, written in pencil, and read off my concerns. I had about six — or maybe more because you’re not supposed to go to the doctor without a list of questions. 

They homed in on one of my notes: “I feel off balance, like I’m falling forward.”

“What do you mean by ‘falling forward?’” my neurologist asked.

I looked at my husband, then at the DBS tech, who exchanged glances with the neurologist before saying, “You feel as if gravity is pulling you by the shirt collar.”

Exactly!

“Yes,” I said, shaking my head — but not shaking my head because that’s a Parkinson’s symptom. You don’t move the things you once could move in the way you used to be able to move them.

Then the blow

The neurologist contemplated my answer before responding with, “It may be time to get a cane.”

Whaaaat?

Though I knew this day was coming, the suggestion was a blow. Avoiding eye contact with everyone in the room, I bowed my head, felt my eyes fill with tears, and swallowed hard. I wasn’t even 60 years old.

Wait! I have had this disease for a suspected 25 years or more and been diagnosed for 15 years, and people still say to me, “You look great.”

Of course, I’m unsure about their expectations of how I should look, what with having Parkinson’s disease and all. Perhaps they envision me as a gray-haired woman with a cane?

It doesn’t matter. It’s all about perspective. I choose to look at life with hope and gratitude. Hope for a beautiful tomorrow, whether tomorrow brings a cure or not. And gratitude that I’ve made it this far as well as I have, with or without a cane. Now the big question is: What color do I want? And do I need a horn?

***

Note: Parkinson’s News Today is strictly a news and information website about the disease. It does not provide medical advice, diagnosis or treatment. This content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or another qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website. The opinions expressed in this column are not those of Parkinson’s News Today or its parent company, BioNews Services, and are intended to spark discussion about issues pertaining to Parkinson’s disease.

The post Giving Thanks When Life Hands You a Cane appeared first on Parkinson’s News Today.

Updated Canadian Guideline Reflects Latest Advances and Adds Palliative Care Section

Canadian Guideline Parkinson's

Updated recommendations on Parkinson’s disease have been published in the Canadian Guideline for Parkinson Disease, which includes a new section about palliative care.

Focused on issues relevant to the Canadian healthcare system, the update reflects the latest evidence and advances — particularly regarding diagnostic criteria and treatment options — and draws on recommendations from the United States, Scotland, the United Kingdom, and the European Union.

The Parkinson Canada-funded publication, which was published in the Canadian Medical Association Journal, offers fundamental guidance to healthcare professionals, patients, and families, and was developed with help from experts in Canada from various disciplines.

“This guideline provides evidence-based recommendations to improve the overall standard of care of individuals with Parkinson disease in Canada, not only for healthcare professionals, but also for policy makers, patients themselves, and their caregivers,” Veronica Bruno, MD, a neurologist with a subspecialty in movement disorders at the University of Calgary, said in a news release. “Managing the complexity of Parkinson disease requires clear, standardized procedures that can be used by all actors involved.”

The new guideline has five sections: communication, diagnosis and progression, treatment, non-motor features, and palliative care, which was added in this update. Palliative care, including an option of medically assisted death, should be considered throughout the course of the disease, the publication states.

“End-of-life choices, including advanced care planning with an open and frank discussion with the patient and the person designated as decision-maker, should be initiated early in the disease process,” the guideline says. “Conversations occurring in the ambulatory setting are likely to be more productive and less crises-driven than leaving such conversations until an acute stay in hospital.”

Other highlights include:

“A limitation to implementing the guideline is the lack of access to health care providers experienced in caring for people with Parkinson disease,” David Grimes, a neurologist at The Ottawa Hospital, said.

“In addition to specialist physicians, we need more nurses, and speech, occupational and physical therapists with training in this area, as well as adequate palliative care for Parkinson patients,” he added.

The post Updated Canadian Guideline Reflects Latest Advances and Adds Palliative Care Section appeared first on Parkinson’s News Today.

Deep Brain Stimulation Eases Parkinson’s Symptoms by Directly Raising Dopamine Levels, Study Suggests

deep brain stimulation study

Deep brain stimulation (DBS) eases tremors and muscle rigidity, and improves cognition and mood in Parkinson’s patients by raising dopamine levels in the brain, a small study from Johns Hopkins Medicine suggests.

The research, “Effect of STN DBS on vesicular monoamine transporter 2 and glucose metabolism in Parkinson’s disease,” was published in the journal Parkinsonism and Related Disorders.

DBS is given to Parkinson’s patients whose motor symptoms do not respond well to medication. In this procedure, fine wires are inserted into the brain and connected to an electrical current source to stimulate areas responsible for movement control, such as the subthalamic nucleus (STN).

But the processes through which DBS changes brain activity are not completely understood.

Studies using positron emission tomography (PET) imaging indicate that brain metabolism is altered but dopamine levels unchanged after DBS. Still, the vast network linking dopamine-producing neurons to various brain regions suggested to the Hopkins team that this chemical messenger could still be a key part in the efficacy of DBS.

“Even if dopamine-producing cells are not activated directly, electrically stimulating other parts of the brain, particularly those that receive information from dopamine-producing cells, can indirectly increase dopamine production,” Kelly Mills, MD, a study co-author, said in a news release written by Vandana Suresh.

Specifically, the investigators focused on a protein called vesicular monoamine transporter (VMAT2), which regulates dopamine packaging into tiny vesicles and its subsequent release into the synapse, the site where two nerve cells communicate. Using PET scans, prior research confirmed that increases in brain dopamine levels with levodopa — a mainstay of Parkinson’s treatment — are associated with decreases in the amount of VMAT2, and vice versa.

The team used a tracer for VMAT2 and another for glucose, intended to track changes in brain activity. Among the seven patients (mean age of 67, range 60–74; all white), four were men and three were women.

Besides PET scans taken before and four-to-six months after DBS targeting of the subthalamic nucleus, these patients also underwent motor function evaluations with the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale, psychological assessments — such as the Hamilton Depression Rating Scale and the Neuropsychiatric Inventory — and cognitive tests.

Results revealed that DBS led to significantly fewer tremors and, to a lesser extent, lesser muscle rigidity. Other benefits included improvements in cognitive function and mood, with depression scores lowering as much as 40%.

Suggesting higher amounts of dopamine, all seven patients showed lower levels of VMAT2 after DBS in the caudate and the putamen — two brain areas important to motor control — and in the brain’s cortical and limbic regions, which are implicated in movement, mood, and cognition.

Glucose metabolism was also lower in the striatum — which includes the caudate and the putamen — and higher in cortical areas and the cerebellum, which has a major role in motor coordination, balance, and speech. Of note, the striatum is a key component of the motor and reward systems of the brain.

The data further demonstrated that lower VMAT2 levels were associated with eased tremors and lesser depressive symptoms. They also correlated with decreased striatal, and increased cortical and limbic, metabolism.

Overall, the correlation between VMAT2 and glucose PET scans suggest that having more dopamine may be central to the restored brain activity achieved with DBS, Mills said.

Shifting the approach taken to track dopamine was key for these findings, the scientist added. “Rather than looking at the amount of dopamine bound on receptors of dopamine-receiving cells, we looked at VMAT2 concentrations within dopamine-producing cells, which may be more sensitive to detecting changes in dopamine with deep brain stimulation,” she said.

Gwenn Smith, PhD, the study’s lead author, added: “Our study is the first to show in human subjects with Parkinson’s disease that deep brain stimulation may increase dopamine levels in the brain, which could be part of the reason why these people experience an improvement in their symptoms.”

Although cautioning that larger studies are needed to more effectively gain from DBS use, likely by determining better targets for stimulation, the scientists added that a deeper understanding of how this procedure works in Parkinson’s “will inform [the] development of more effective treatments, treatment response predictors and ultimately, will have implications for improving the clinical care” of people with Parkinson’s, depression and Alzheimer’s.

The post Deep Brain Stimulation Eases Parkinson’s Symptoms by Directly Raising Dopamine Levels, Study Suggests appeared first on Parkinson’s News Today.